Basic constructor for decision tree classes for different data formats.
Arguments
- transmat
Transition probability matrix. Rows are from nodes and columns are to nodes.
- tree_dat
Hierarchical tree structure of parents and children in a list of vectors with integer values.
- dat_long
Long format data frame with from, to, prob, vals columns.
- ...
additional arguments
Examples
define_model(transmat =
list(prob = matrix(data=c(NA, 0.5, 0.5), nrow = 1),
vals = matrix(data=c(NA, 1, 2), nrow = 1)
))
#> $prob
#> [,1] [,2] [,3]
#> [1,] NA 0.5 0.5
#>
#> $vals
#> [,1] [,2] [,3]
#> [1,] NA 1 2
#>
#> attr(,"class")
#> [1] "transmat" "list"
define_model(tree_dat =
list(child = list("1" = c(2, 3),
"2" = NULL,
"3" = NULL),
dat = data.frame(node = 1:3,
prob = c(NA, 0.5, 0.5),
vals = c(0, 1, 2))
))
#> $child
#> $child$`1`
#> [1] 2 3
#>
#> $child$`2`
#> NULL
#>
#> $child$`3`
#> NULL
#>
#>
#> $dat
#> node prob vals
#> 1 1 NA 0
#> 2 2 0.5 1
#> 3 3 0.5 2
#>
#> attr(,"class")
#> [1] "tree_dat" "list"
define_model(dat_long = data.frame(from = c(NA, 1, 1),
to = 1:3,
prob = c(NA, 0.5, 0.5),
vals = c(0, 1, 2)))
#> from to prob vals
#> 1 NA 1 NA 0
#> 2 1 2 0.5 1
#> 3 1 3 0.5 2
#> 4 2 4 NA 0
#> 5 3 4 NA 0